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Abstract
 The focus of this research was to determine whether and how distributed generation (DGs) could help with 
voltage control (VC) in medium voltage distribution grids through reactive power generation and absorption. The control 
technique was described using the optimal power flow problem, with a focus on voltage control. DGs are used in this 
work to simulate voltage control with the intention of minimizing active power loss while improving the network voltage 
profile. This study employs a Differential Evolution (DE) approach to determine the optimal solution with benefits and 
potential potency and introspective acumen. The effectiveness of the optimizer is analyzed, and its superiority over 
Genetic algorithm (GA) is illustrated using substantial statistical analysis. In this study, the IEEE 33-bus is used as a test 
system.
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1. Introduction
 Voltage instability, or the inability of a bus voltage to return to its original or acceptable value as a result of a 
disturbance, is one of the leading causes of voltage collapse, which can result in a power system outage.The majority of 
the outages were caused by voltage instability, which was caused by the control system’s inability to pull enough reactive 
power to support the voltage at critical grid buses [1, 2]. The use of reactive power resources is a common method of 
controlling voltage in power systems. It protects against fast voltage changes over a short period of time, such as a few 
seconds, which controls the magnitude of the load bus voltage. The control is implemented by adjusting the bus voltage 
that has the greatest influence [3, 4].

 How the system is partitioned and which pilot bus is used heavily influence the use of a Voltage strategy and 
sensitivity analysis was used to select the pilot buses for each partition [5–7]. In Italy, a similar hierarchical control 
architecture has been implemented [8, 9].Once the tertiary voltage regulator minimizes the differences between real field 
measurements and ideal projected references, the master regulator set-point values are reset [10]. The European 
hierarchical voltage control system is made up of geographically dispersed regulators that were typically built on the 
basis of offline investigations and later became fixed distribution entries [11].

The juncture correlation, which was used in the vast bulk of power networks worldwide in the previous
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century, is insufficient to ensure smart grid features. Due to the high cost of phasor measurement units, previous 
research focused on employing a variety of optimization methods to reduce the number of phasor measurement units 
while maintaining complete detection accuracy of the power system[12, 13]. Many researchers have investigated the 
use of optimization techniques in the VC, such as optimizing the collaboration of tap changers, autonomous regulators, 
and solar power generation [14, 15], in which only the use of Distributed Energy Resources (DER) that affect the 
designated region is optimized, and the distribution grid is divided into smaller sections that are optimized separately. 
Decentralized optimization is another approach [16–18]. Offline optimization for the entire grid is performed using 
finite data sets in this case, and look-up tables for each inverter-based DER are developed so that they can run solely.

 The preceding studies show that voltage regulation for distribution systems is an ongoing problem. As a result, 
the following are the work’s objectives: Proper voltage control using DGs with the goal of lowering active power loss and 
improving voltage profile. The proposed optimizer’s performance is evaluated, and its superiority over Differential 
Evolution (DE) and the Genetic Algorithm (GA) is demonstrated using extensive statistical analysis. The IEEE 33-bus is 
used as a test system in this study.

2. Differential Evolution Algorithm
 DE is a parallel direct search method that uses parameter vectors in MC E-dimensions as a population for each 
generation GP

Xi,GP , I = 1, 2, ..., MC                    (1) 
            
The initial vector population is generated at random and should encompass the entire parameter space.  

 If a preliminary solution is available, the initial population could be formed by multiplying the nominal solution 
Xnom,0 by normally distributed random deviations.

 DE creates new parameter vectors by multiplying a third vector by the weighted difference between two 
population vectors. This is known as mutation. The altered vector’s properties are then combined with those of another 
preset vector, the target vector, to form the trial vector.

The target vector   XI,GP , i = 1, 2, ..., MC,r is formed:

 QPI,GP+1  = Xr1,GP  + FP · (Xr2,GP  − Xr3,GP )                                                                                            (2)

with random indexes r1, r2, r3 1, 2, ...MC, integer, individually unique, and FP>0.  FP, a real and constant factor   [0, 2], 
regulates the amplification of the differential variation (Xr2.GP   Xr3,GP ) To make the altered parameter vectors more 
diverse, crossover is used. To do this, the trial vector is formed:
 
 PPI,GP+1  = (PP1/,GP+1, PP2I ,GP+1, ..., pDi,GP+1)                                                                                                     (3)

is formed, where 

( if (randb(JB) CRP) or JB = rnbr(I)
                            ≥                                      JP = 1, 2, ...E.
PPJI,GP+1 = if (randb(JB) > CRP) and JB s rnbr(I),                                                                                                         (  4)

     Figure 1: IEEE 33 bus test system
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 here the Jth evaluation of a uniform random number generator with a result of [0.1] is called randb(JB). The 
user must specify the crossover constant [0.1], represented by CRP. The index rnbr(I) 1, 2, ..., E was picked at random. 
This ensures that QPi,G+1. sends PPI,GP+1 at least one parameter.

 To evaluate if the trial vector PPI,GP+1 should belong to generation GP + 1, it is tested against the target vector 
XI,GP using the greedy criteria. If the vector PPI,GP+1 has a lower cost function value than the vector AI,GP , thenXI,GP is set 
to PPI, GP; otherwise, the original value XI,GP is kept.

      Bus

    Figure 2: Voltage curve after integrating DGs

3. Modelling and Simulation
 A power system’s voltage and reactive power control hierarchy is made up of the following components:
 
 The first level focuses on controlling the generator’s terminal voltage with an automatic voltage regulator 
(AVR). This tier has the fastest response time when compared to the other two. The control is accomplished

    

    Figure 3: Voltage curve before integrating DGs
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    Figure 4: Voltage at bus 32 after optimization

    Figure 5: Voltage at bus 16 after optimization

by adjusting the field current of the generator. The second level targets the cluster control , which controls reactive power. 
If the grid is divided into multiple regions, a few regional voltage regulators are used.

    

    Figure 6: Voltage at bus 19 after optimization
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    Figure 7: Active power loss curve

   

    Figure 8: Reactive power loss curve

 The objective function developed in this work aims to provide the grid with the maximum allowable reactive 
power from DGs while minimizing total energy loss and maximizing the system voltage profile.

The evaluation criteria can be grouped together to form a single objective function.

               OBjective = minimize(ActivePowerLoss)                                                                                           (5)

where,
 
  Active Power Loss = KK SSAA(V 2 + V 2 − 2VDU Ucos(αY − αU ))                                                             (6)
 
    Y U
    AA=1
SSAA is a AA line conductance, where AA is a line number between buses Y and U. VY and αY signify the voltage and angle 
at bus Y, respectively.

80
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3.1. Simulation Procedure
 For the purpose of this work,  IEEE 33 bus is used as test systems.   The IEEE 33 bus system has a total load 
demand of 3.715 MW and 2.3 MVar. The control technique described below was developed and implemented in the 
experimental scenario for the study grid mentioned in the preceding sections. If the voltage for the tertiary voltage control 
falls below 0.95 p.u., the optimization algorithm is run. If the optimization algorithm does not converge to the best 
solution, the constraints remain within their limits, and the solution is accepted despite being suboptimal, the solver 
should be adjusted or modified, or no action is taken. The operation is carried out every hour.

4. Results and Analysis
 Figure 2 and Figure 3 show the voltage profile of DG integrated IEEE 33 over a 24-hour period. A margin of 
0.95 p.u. (per unit) is used to detect the buses’ vulnerability. This means that buses with an average voltage of less than 
0.95 p.u. are classified as vulnerable and subject to optimization.  To ensure a fair comparison, the total number of 
iterations and starting population size for each island are kept consistent across all three approaches. Furthermore, the 
maximum number of iterations is used as the algorithm’s halting condition. Furthermore, in terms of elapsed time, DA 
outperforms GA. DE outperforms GA in terms of average, best, and worst fitness values. As a result, in terms of fitness 
function value and computational performance, DE outperforms all other algorithms.

    Table 1: Statistics of DE, GA

 The above-mentioned control method resulted in local optimum voltage profiles that met the criteria at all of 
the buses. Figures 4-6 contrasts and compares the optimized voltage profiles of buses 32, 16 and
19. The optimized voltage profiles are greater than 0.95 p.u. as a result of objective function optimization, indicating that 
only the truly necessary control actions are performed to meet the scheme pilot’s prerequisites. Furthermore, as shown in 
Figure 7, Table 1, when the optimization process is used, active power losses in the grid are reduced by approximately 
5.6 percent. Similarly, DE reduces active power loss to base loss in the IEEE 33 bus system by 73.6%, making it the best 
of all algorithms. The optimized reactive power production profiles are shown in Figure 8. Because control actions are 
usually required in that region , the majority of the generated reactive power is deposited at the feeder’s end during 
non-optimized hours. DGs are urged to provide their highest reactive power reserves during the hours when optimization 
is required.

 This implies that the provided experimental grid has only a limited amount of voltage control via reactive 
power. They can, on the other hand, be used to shape voltage profiles. Furthermore, by taking into account the constraints, 
overall active power losses are minimized.

5.Conclusion
 Using optimization approaches in distribution networks, this research provides a unique method for voltage 
control.  The suggested DE method was compared to the results of one other algorithms, GA. IEEE 33 bus is used as test 
systems. According to the results, DE beats all of the algorithms for all of the objectives and both test systems. As a result, 
the proposed VC method may be used in a real-world power distribution system using DGs.

Index
Minimum Power Loss (kW)
Minimum Power Loss (kW)
Average Power Loss (kW)
Computational time (s)

DE GA
55

62.6
58.8
14

77
83.5
79.4
26
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